pytorch之Tensor
#tensor和numpy
import torch
import numpy as npnumpy_tensor = np.random.randn(3,4)
print(numpy_tensor)
#将numpy的ndarray转换到tendor上
pytorch_tensor1 = torch.Tensor(numpy_tensor)
pytorch_tensor2 = torch.from_numpy(numpy_tensor)
print(pytorch_tensor1)
print(pytorch_tensor2)
#将pytorch的tensor转换到numpy的ndarray
numpy_array = pytorch_tensor1.numpy() #如果pytorch在cpu上
print(numpy_array)
#tensor的一些属性,得到tensor的大小
print(pytorch_tensor1.shape)
print(pytorch_tensor1.size())
print(pytorch_tensor1.type()) #得到tensor的数据类型
print(pytorch_tensor1.dim()) #得到tensor的维度
print(pytorch_tensor1.numel()) #得到tensor所有元素的个数x = torch.rand(3,2)
x.type(torch.DoubleTensor)
print(x)
np_array = x.numpy()
print(np_array.dtype)
[[ 1.05174423 1.09272735 0.46027768 -0.03255727] [ 0.57027229 1.22165706 -0.77909099 -0.17678552] [ 0.02112402 -1.08971068 0.72317744 -1.45482622]] tensor([[ 1.0517, 1.0927, 0.4603, -0.0326], [ 0.5703, 1.2217, -0.7791, -0.1768], [ 0.0211, -1.0897, 0.7232, -1.4548]]) tensor([[ 1.0517, 1.0927, 0.4603, -0.0326], [ 0.5703, 1.2217, -0.7791, -0.1768], [ 0.0211, -1.0897, 0.7232, -1.4548]], dtype=torch.float64) [[ 1.0517442 1.0927273 0.46027768 -0.03255726] [ 0.57027227 1.221657 -0.779091 -0.17678553] [ 0.02112402 -1.0897107 0.72317743 -1.4548262 ]] torch.Size([3, 4]) torch.Size([3, 4]) torch.FloatTensor 2 12 tensor([[0.1810, 0.5168], [0.9859, 0.1294], [0.9262, 0.6952]]) float32
#Tensor的操作1
import torch
x = torch.ones(2,3)
print(x)
print(x.type())
x = x.long()
print(x.type())
x = x.float()
print(x.type())y = torch.rand(3,4)
print(y)
#沿着行取最大值
maxval,maxindex = torch.max(y,dim=1)
print(maxval,'\n',maxindex)#沿着行对y求和
sum = torch.sum(y,dim=1)
print(sum)
tensor([[1., 1., 1.], [1., 1., 1.]]) torch.FloatTensor torch.LongTensor torch.FloatTensor tensor([[0.8910, 0.0130, 0.9600, 0.6760], [0.5184, 0.6240, 0.9589, 0.2151], [0.6904, 0.3474, 0.7502, 0.2055]]) tensor([0.9600, 0.9589, 0.7502]) tensor([2, 2, 2]) tensor([2.5400, 2.3164, 1.9936])
#Tensor操作2
import torchx = torch.rand(3,2)
print(x)
print(x.size())
#增加一个维度
x = x.unsqueeze(0)
print(x.size())
#减少一个维度
x = x.squeeze(0)
print(x.size())
#增加回来
x = x.unsqueeze(1)
print(x.size())
#使用permute和transpose来对矩阵维度进行变换
#permute 可以重新排列tensor的维度
#transpose 可以交换两个维度
x = x.permute(1,0,2)
print(x.size())
x = x.transpose(0,2)
print(x.size())
tensor([[0.9131, 0.2160], [0.0987, 0.5013], [0.1715, 0.8862]]) torch.Size([3, 2]) torch.Size([1, 3, 2]) torch.Size([3, 2]) torch.Size([3, 1, 2]) torch.Size([1, 3, 2]) torch.Size([2, 3, 1])
#使用view对tensor进行reshape
import torch
x = torch.rand(3,4,5)
print(x.shape)
x = x.view(-1,5)
print(x.size())
x = x.view(60)
print(x.shape)#两个Tensor求和
a = torch.rand(3,4)
b = torch.rand(3,4)
c = a + b
print(c)
z = torch.add(a,b)
print(z)
torch.Size([3, 4, 5]) torch.Size([12, 5]) torch.Size([60]) tensor([[0.8822, 1.3766, 1.3586, 0.8951], [1.0096, 0.5511, 0.2035, 0.9684], [1.2502, 0.0963, 1.3955, 0.9479]]) tensor([[0.8822, 1.3766, 1.3586, 0.8951], [1.0096, 0.5511, 0.2035, 0.9684], [1.2502, 0.0963, 1.3955, 0.9479]])
import torch
x = torch.ones(4,4)
print(x)
x[1:3,1:3] = 2
print(x)
tensor([[1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.], [1., 1., 1., 1.]]) tensor([[1., 1., 1., 1.], [1., 2., 2., 1.], [1., 2., 2., 1.], [1., 1., 1., 1.]])